Formation mechanism of PLD-derived $Pb(Mg_{1/3}Nb_{2/3})O_3 - PbTiO_3$ thin films

11 ST 1 Stand Sector days to b

Urška Gabor

Supervisors: M. Spreitzer, D. Suvorov

Student Speech Contest

ECerS 2017

15th Conference & Exhibition of the European Ceramic Society

July 9-13, 2017 / Budapest, Hungary

Jožef Stefan Institute, Advanced Materials Department, Jamova 39, 1000 Ljubljana, SLOVENIA

U. Gabor, Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, SLOVENIA

Piezoelectric microelectromechanical systems (piezoMEMS)

Status of the MEMS Industry report, Yole Développement, May 2017

Vibration energy harvesting

Main device features:

- NO battery (no waste)
- TRUE wireless
- SMALL size
- LONG lifetime
- HIGH temperature resistance

Why $Pb(Mg_{1/3}Nb_{2/3})O_3$ -PbTiO₃?

S.H. Baek et al., *Science*, **334**, 958 (2011)

Pulsed-laser deposition (PLD)

- Simple and fast
- Flexible/versatile
- Large pressure range
- Precise control of the growth rate
- For many materials the composition of the target is preserved in the transfer to the substrate surface

Scalable – large wafers

U. Gabor, Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, SLOVENIA

Release etch of piezoMEMS wafers

Multi-project piezoMEMS wafer from SINTEF

 $https://www.sintef.no/globalassets/project/piezovolume/publications/industrial-fabrication-of-piezomems_tyholdt.pdf$

But we first need to study the phenomena on a research system

Integration with silicon

Buffer layer (1/2 monolayer Sr/Si(001) surface)

Si

Challenges:

Pulsed-laser deposition (PLD)

- Simple and fast
- Flexible/versatile
- Large pressure range
- Precise control of the growth rate
- For many materials the composition of the target is preserved in the transfer to the substrate surface

Challenges:

- Multicomponent material
- Volatility of Pb → lead-deficient pyrochlore
- Meticulous control of the growth conditions does not always suffice!

How much lead excess?

- Pb-loss compensation through the use of Pb-rich targets

Targets with different amounts of Pb excess and PMN:PT ratio

10 mol. % 15 mol. % **20 mol. %**

Non-stoichiometric transfer and shifted morphotropic phase boundary (MPB)

Design of experiments

- Higher electromechanical coupling
- Higher achievable voltages due to the higher piezoelectric constant and adjustable electrode spacings

PMN-40PT / STO

LNO strongly stabilizes the perovskite phase

U. Gabor, Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, SLOVENIA

PMN-40PT / STO

LNO strongly stabilizes the perovskite phase

U. Gabor, Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, SLOVENIA

- Process pressure strongly influences phase purity
- Broad (00l)_{pc} peak splitting indicates strong inhomogeneity – not MPB
- Peak splitting absent in films prepared from targets without Pb-excess, but also observed in bulk ceramic samples

Oxygen deficiency is not the reason for the splitting – shown by experiments with O_2/Ar mixture

TEM cross-sections

PMN-40PT + 20 mol. % PbO / STO

- In both samples
- Defects form close to the interface...

... and propagate throughout the films

Longitudinal design

- Nb-doped STO
- Interdigital electrodes (IDE)

Piezoelectric coefficients low – films are clamped!

PFM litography (in-situ poling)

- A film prepared at 0.13 mbar
- B film prepared at 0.27 mbar

Transverse design

Parallel plate capacitor structure with Au top electrodes

LNO electrodes

Good domain mobility

digit length

digit width

g

interdigital spacing

Conclusions

Model system for multicomponent materials

Plasma-plume dynamics (pressure) extremely important!

U. Gabor, Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, SLOVENIA

ECerS 2017

Dome section 12/2

Prof. Danilo Suvorov

Dr. Matjaž Spreitzer

- Damjan Vengust, Advanced Materials Department, Jožef Stefan Institute
- David Fabijan, Advanced Materials Department, Jožef Stefan Institute
- Dr. Daniel Díaz Fernandez, Advanced Materials Department, Jožef Stefan Institute
- Tjaša Parkelj, Advanced Materials Department, Jožef Stefan Institute
- Dr. Hana Uršič, Electronic Ceramics, Jožef Stefan Institute
- Dr. Elena Tchernychova, Department of Materials Chemisty, National Institute of Chemistry

